

Three level inverter Power Module

All multiple inputs and outputs must be shorted together Example: 10/11/12 ; 7/8 ...

APTCV60TLM99T3G

Trench & Field Stop IGBT3 Q2, Q3: $V_{CES} = 600V$; $I_C = 30A$ @ Tc = 80°C

Super junction MOSFET Q1, Q4: $V_{DSS} = 600V$; $I_D = 17A$ @ Tc = 80°C

Application

- Solar converter
- Uninterruptible Power Supplies

Features

- Q2, Q3 Trench + Field Stop IGBT3
- Low voltage drop
- Low tail current
- Switching frequency up to 20 kHz
- Low leakage current
- RBSOA and SCSOA rated
- Q1, Q4 Super junction MOSFET
 - Ultra low R_{DSon}
 - Low Miller capacitance
- Ultra low gate charge
- Avalanche energy rated
- Very rugged
- Kelvin emitter for easy drive
- Very low stray inductance
- High level of integration
- Internal thermistor for temperature monitoring

Benefits

- Stable temperature behavior
- Very rugged
- Direct mounting to heatsink (isolated package)
- Low junction to case thermal resistance
- Low profile
- RoHS Compliant

All ratings (a) $T_j = 25^{\circ}C$ unless otherwise specified

WA CAUTION: These Devices are sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.

Power Matters."

Q1 & Q4 Absolute maximum ratings (per Super junction MOSFET)

Symbol	Parameter	,	Max ratings	Unit
V _{DSS}	Drain - Source Voltage		600	V
т	Continuous Drain Current	$T_c = 25^{\circ}C$	22	
I _D	Continuous Drain Current	$T_c = 80^{\circ}C$	17	А
I _{DM}	Pulsed Drain current		75	
V _{GS}	Gate - Source Voltage		±20	V
R _{DSon}	Drain - Source ON Resistance		99	mΩ
PD	Power Dissipation	$T_c = 25^{\circ}C$	110	W
I _{AR}	Avalanche current (repetitive and non repetitive)		11	А
E _{AR}	Repetitive Avalanche Energy		1.2	in I
E _{AS}	Single Pulse Avalanche Energy		800	mJ

Q1 & Q4 Electrical Characteristics (per Super junction MOSFET)

Symbol	Characteristic	Test Conditions	Min	Тур	Max	Unit
I _{DSS}	Zero Gate Voltage Drain Current	$V_{GS} = 0V$; $V_{DS} = 600V$			50	μΑ
R _{DS(on)}	Drain – Source on Resistance	$V_{GS} = 10V, I_D = 18A$			99	mΩ
V _{GS(th)}	Gate Threshold Voltage	$V_{GS} = V_{DS}, I_D = 1.2 \text{ mA}$	2.5	3	3.5	V
I _{GSS}	Gate – Source Leakage Current	$V_{GS} = \pm 20 V, V_{DS} = 0V$			100	nA

Q1 & Q4 Dynamic Characteristics (per Super junction MOSFET)

Symbol	Characteristic	Test Conditions	Min	Тур	Max	Unit
C _{iss}	Input Capacitance	$V_{GS} = 0V$; $V_{DS} = 100V$		2800		pF
Coss	Output Capacitance	f = 1MHz		130		рг
Q_{g}	Total gate Charge	$V_{GS} = 10V$		14		
Q_{gs}	Gate – Source Charge	$V_{Bus} = 400 V$		20		nC
Q_{gd}	Gate – Drain Charge	$I_D = 18A$		60		
T _{d(on)}	Turn-on Delay Time	$V_{GS} = 10V$		10		
T_r	Rise Time	$V_{Bus} = 400 V$		5		
T _{d(off)}	Turn-off Delay Time	$I_D = 18A$ R _G = 3.3Ω		60		ns
$T_{\rm f}$	Fall Time			5		
R_{thJC}	Junction to Case Thermal Resistance				1.15	°C/W

Q2 & Q3 Absolute maximum ratings (per IGBT)

Symbol	Parameter		Max ratings	Unit
V _{CES}	Collector - Emitter Voltage		600	V
т	Continuous Collector Current	$T_C = 25^{\circ}C$	50	
I _C	Continuous Conector Current	$T_C = 80^{\circ}C$	30	А
I _{CM}	Pulsed Collector Current	$T_C = 25^{\circ}C$	60	
V_{GE}	Gate – Emitter Voltage		± 20	V
PD	Power Dissipation	$T_C = 25^{\circ}C$	90	W
RBSOA	Reverse Bias Safe Operating Area	$T_J = 150^{\circ}C$	60A @ 550V	

Power Matters."

Q2 & Q3 Electrical Characteristics (per IGBT)

Symbol	Characteristic	Test Conditions	Min	Тур	Max	Unit	
I _{CES}	Zero Gate Voltage Collector Current	$V_{GE} = 0V, V_{CE} =$			250	μA	
V	Collector Emitter Saturation Voltage	$V_{GE} = 15V$	$T_j = 25^{\circ}C$		1.5	1.9	V
V _{CE(sat)}	Conector Emitter Saturation Voltage	$I_C = 30A$	$T_j = 150^{\circ}C$		1.7		v
V _{GE(th)}	Gate Threshold Voltage	$V_{GE} = V_{CE}, \ I_C = 400 \mu A$		5.0	5.8	6.5	V
I _{GES}	Gate – Emitter Leakage Current	$V_{GE} = 20V, V_{CE}$	= 0V			300	nA

Q2 & Q3 Dynamic Characteristics (per IGBT)

Symbol	Characteristic	Test Conditions	Min	Тур	Max	Unit
Cies	Input Capacitance	$V_{GE} = 0V$		1600		
Coes	Output Capacitance	$V_{CE} = 25V$		110		pF
Cres	Reverse Transfer Capacitance	f = 1 MHz		50		
Q_{G}	Gate charge	$\begin{array}{c} V_{GE} = \pm 15 V, \ I_C = 30 A \\ V_{CE} = 300 V \end{array}$		0.3		μC
T _{d(on)}	Turn-on Delay Time	Inductive Switching (25°C)		110		
Tr	Rise Time	$V_{GE} = \pm 15V$		45		
T _{d(off)}	Turn-off Delay Time	$V_{Bus} = 300V$ $I_{C} = 30A$		200		ns
T _f	Fall Time	$R_G = 10\Omega$		40		
T _{d(on)}	Turn-on Delay Time	Inductive Switching (150°C)		120		
Tr	Rise Time	$V_{GE} = \pm 15V$ $V_{Bus} = 300V$		50		ns
T _{d(off)}	Turn-off Delay Time	$I_C = 30A$		250		115
$T_{\rm f}$	Fall Time	$R_G = 10\Omega$		60		
Eon	Turn-on Switching Energy	$V_{GE} = \pm 15V \qquad T_j = 25^{\circ}C$		0.16		mJ
Lon		$V_{Bus} = 300V$ $T_j = 150^{\circ}C$		0.3		1115
E _{off}	Turn-off Switching Energy	$I_C = 30A$ $T_j = 25^{\circ}C$		0.7		mJ
		$R_G = 10\Omega \qquad \qquad T_j = 150^{\circ}C$		1.05		
Isc	Short Circuit data			150		А
R_{thJC}	Junction to Case Thermal Resistance				1.6	°C/W

CR2 & CR3 diode ratings and characteristics (per device)

Symbol	Characteristic	Test Conditions	Min	Тур	Max	Unit
V_{F}	Diode + tranzorb Forward Voltage	$I_F = 10A$		10		V
R _{thJC}	Junction to Case Thermal Resistance				8	°C/W

Power Matters."

CR5 & CR6 diode ratings and characteristics (per diode)

Symbol	Characteristic	Test Conditions		Min	Тур	Max	Unit
V _{RRM}	Peak Repetitive Reverse Voltage					600	V
I _{RM}	Reverse Leakage Current	$V_R=600V$				25	μΑ
I _F	DC Forward Current		$Tc = 80^{\circ}C$		30		Α
		$I_F = 30A$			1.8	2.2	
$V_{\rm F}$	Diode Forward Voltage	$I_F = 60A$ $I_F = 30A$			2.2		v
			$T_j = 125^{\circ}C$		1.5		v
+	Reverse Recovery Time		$T_j = 25^{\circ}C$		25		100
t _{rr}	Reverse Recovery Time	$I_{\rm F} = 30 {\rm A}$	$T_j = 125^{\circ}C$		160		ns
0	Reverse Recovery Charge	$V_R = 400V$ di/dt = 200A/µs	$T_j = 25^{\circ}C$		35		nC
Qrr	Reverse Recovery Charge		$T_j = 125^{\circ}C$		480		ne
Err	Reverse Recovery Energy	$I_F = 30A$ $V_R = 400V$ $di/dt = 1000A/\mu s$	$T_j = 125^{\circ}C$		0.6		mJ
R_{thJC}	Junction to Case Thermal Resistance					1.2	°C/W

CR7 & CR8 diode ratings and characteristics (per diode)

Symbol	Characteristic	haracteristic Test Conditions		Min	Тур	Max	Unit
V _{RRM}	Peak Repetitive Reverse Voltage					1200	V
I _{RM}	Reverse Leakage Current	V _R =1200V				100	μΑ
I _F	DC Forward Current		$Tc = 80^{\circ}C$		30		Α
		$I_F = 30A$			2.6	3.1	
$V_{\rm F}$	Diode Forward Voltage	$I_F = 60A$ $I_F = 30A$			3.2		V
			$T_{j} = 125^{\circ}C$		1.8		v
+	Payarsa Pagayary Tima		$T_j = 25^{\circ}C$		300		n 0
t _{rr}	Reverse Recovery Time	$I_F = 30A$	$T_j = 125^{\circ}C$		380		ns
Q _{rr}	Reverse Recovery Charge	$V_R = 800V$ di/dt = 200A/µs	$T_j = 25^{\circ}C$		360		nC
Qrr	Reverse Recovery Charge		$T_j = 125^{\circ}C$		1700		пс
Err	Reverse Recovery Energy	$I_F = 30A$ $V_R = 800V$ $di/dt = 1000A/\mu s$	$T_j = 125^{\circ}C$		1.6		mJ
R _{thJC}	Junction to Case Thermal Resistance					1.2	°C/W

Temperature sensor NTC (see application note APT0406 on www.microsemi.com for more information).

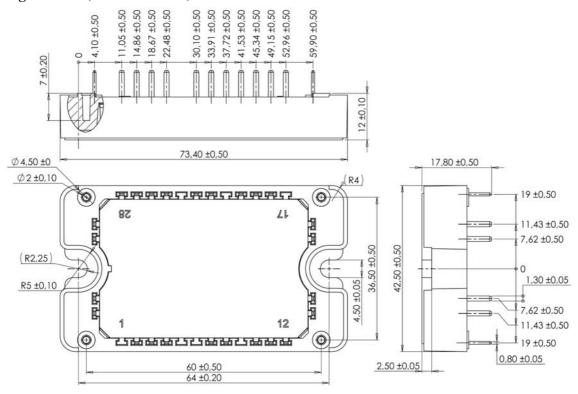
Symbol	Characteristic		Min	Тур	Max	Unit
R ₂₅	Resistance @ 25°C			50		kΩ
$\Delta R_{25}/R_{25}$				5		%
B _{25/85}	$T_{25} = 298.15 \text{ K}$			3952		K
$\Delta B/B$		$T_C=100^{\circ}C$		4		%

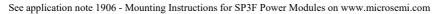
$$= \frac{R_{25}}{\exp\left[B_{25/85}\left(\frac{1}{T_{25}} - \frac{1}{T}\right)\right]}$$
 T: Thermis
R_T: Thermi

stor temperature

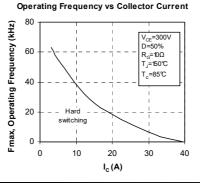
$$R_{T} = \frac{R_{25}}{\exp\left[B_{25/85}\left(\frac{1}{T_{25}} - \frac{1}{T}\right)\right]} = \frac{1}{1}$$

istor value at T

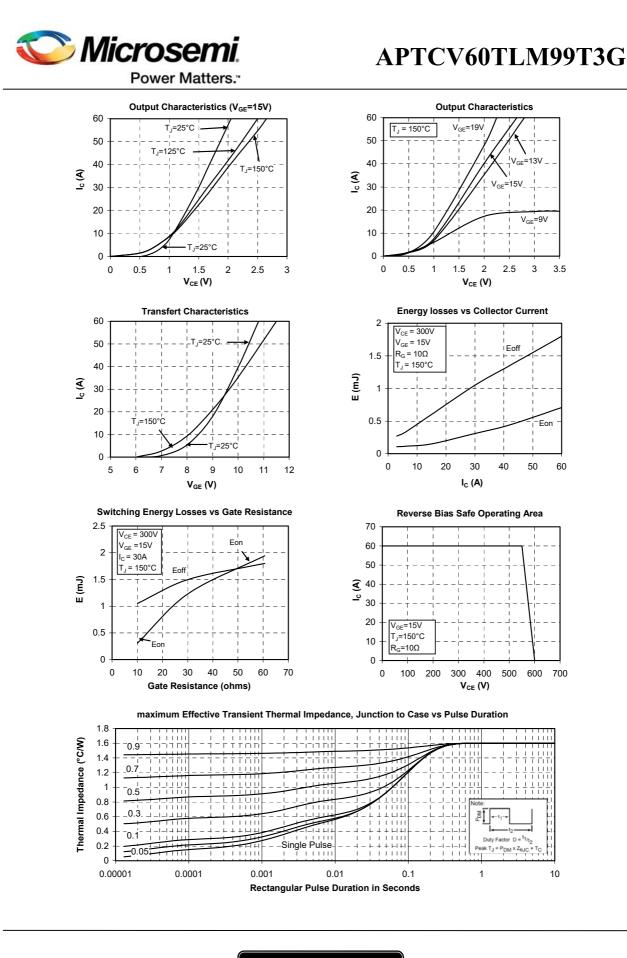

Power Matters."


Thermal and package characteristics

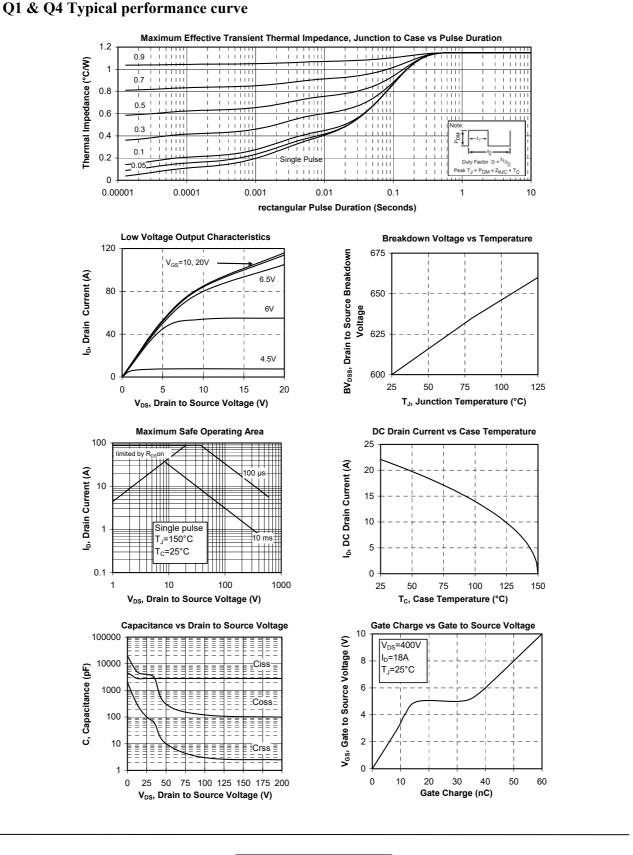
Symbol	Characteristic			Min	Max	Unit
VISOL	RMS Isolation Voltage, any terminal to case	IS Isolation Voltage, any terminal to case t =1 min, 50/60Hz				V
TJ	Operating junction temperature range			-40	175*	
T _{JOP}	Recommended junction temperature under s	witching condit	ions	-40	T _J max -25	°C
T _{STG}	Storage Temperature Range			-40	125	C
T _C	Operating Case Temperature			-40	125	
Torque	Mounting torque	To heatsink	M4	2	3	N.m
Wt	Package Weight				110	g


* Tjmax = 150°C for Q1 & Q4

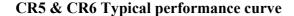
Package outline (dimensions in mm)

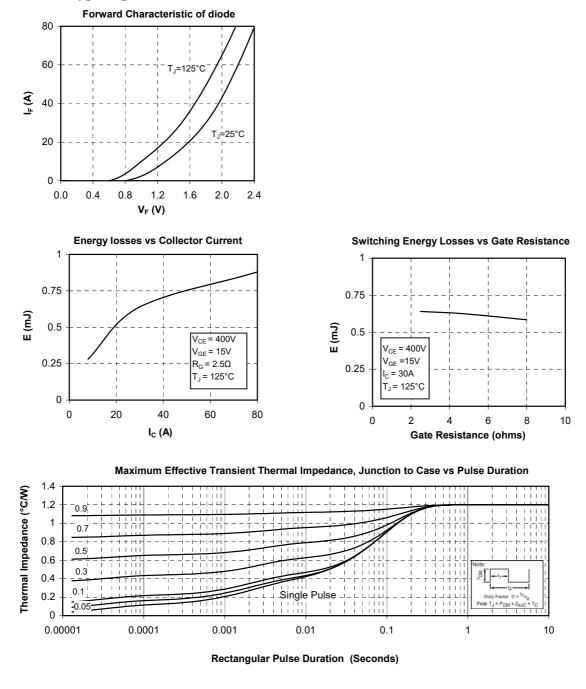


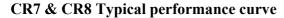
Q2 & Q3 Typical performance curve

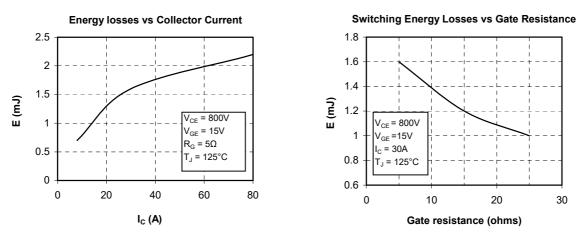


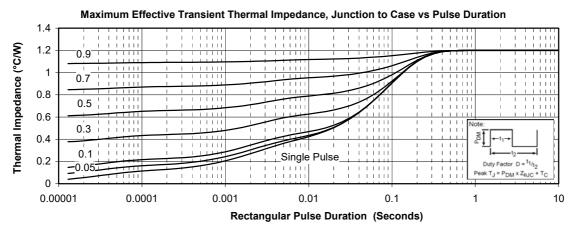
APTCV60TLM99T3G - Rev 3 November, 2017






APTCV60TLM99T3G-Rev 3 November, 2017





V_F, Anode to Cathode Voltage (V)

DISCLAIMER

The information contained in the document (unless it is publicly available on the Web without access restrictions) is PROPRIETARY AND CONFIDENTIAL information of Microsemi and cannot be copied, published, uploaded, posted, transmitted, distributed or disclosed or used without the express duly signed written consent of Microsemi. If the recipient of this document has entered into a disclosure agreement with Microsemi, then the terms of such Agreement will also apply. This document and the information contained herein may not be modified, by any person other than authorized personnel of Microsemi. No license under any patent, copyright, trade secret or other intellectual property right is granted to or conferred upon you by disclosure or delivery of the information, either expressly, by implication, inducement, estoppels or otherwise. Any license under such intellectual property rights must be approved by Microsemi in writing signed by an officer of Microsemi.

Microsemi reserves the right to change the configuration, functionality and performance of its products at anytime without any notice. This product has been subject to limited testing and should not be used in conjunction with lifesupport or other mission-critical equipment or applications. Microsemi assumes no liability whatsoever, and Microsemi disclaims any express or implied warranty, relating to sale and/or use of Microsemi products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Any performance specifications believed to be reliable but are not verified and customer or user must conduct and complete all performance and other testing of this product as well as any user or customers final application. User or customer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the customer's and user's responsibility to independently determine suitability of any Microsemi product and to test and verify the same. The information contained herein is provided "AS IS, WHERE IS" and with all faults, and the entire risk associated with such information is entirely with the User. Microsemi specifically disclaims any liability of any kind including for consequential, incidental and punitive damages as well as lost profit. The product is subject to other terms and conditions which can be located on the web at http://www.microsemi.com/legal/tnc.asp

Life Support Application

Seller's Products are not designed, intended, or authorized for use as components in systems intended for space, aviation, surgical implant into the body, in other applications intended to support or sustain life, or for any other application in which the failure of the Seller's Product could create a situation where personal injury, death or property damage or loss may occur (collectively "Life Support Applications").

Buyer agrees not to use Products in any Life Support Applications and to the extent it does it shall conduct extensive testing of the Product in such applications and further agrees to indemnify and hold Seller, and its officers, employees, subsidiaries, affiliates, agents, sales representatives and distributors harmless against all claims, costs, damages and expenses, and attorneys' fees and costs arising, directly or directly, out of any claims of personal injury, death, damage or otherwise associated with the use of the goods in Life Support Applications, even if such claim includes allegations that Seller was negligent regarding the design or manufacture of the goods.

Buyer must notify Seller in writing before using Seller's Products in Life Support Applications. Seller will study with Buyer alternative solutions to meet Buyer application specification based on Sellers sales conditions applicable for the new proposed specific part.